

Impact of body habitus on the development of fluid overload in critically ill patients

Peyton Moon, PharmD Candidate; Aaron Chase, PharmD Candidate; Andrea Sikora Newsome, PharmD, BCPS, BCCCP; W. Anthony Hawkins, PharmD, BCCCP; Susan E. Smith, PharmD, BCPS, BCCCP; on behalf of the UGA Critical Care Collaborative (UGA C3)

BACKGROUND

- Intravenous fluids (IVF) are commonly used in the critical care setting for resuscitation and maintenance therapy.
- There are currently no specific guidelines for dosing IVF in critically ill patients.
- Excessive fluid administration resulting in fluid overload is associated with organ failure, increased mortality, and increased time on mechanical ventilation.
- Research Question: Does body habitus influence the risk of fluid overload?

OUTCOMES

Primary

• Incidence of fluid overload on day 3 of ICU stay

Secondary

- Total fluid intake/kg total body weight (TBW)
- Hospital mortality

STUDY DESIGN

- Design: IRB-approved, retrospective cohort
- Time Frame: January 2017 through April 2018
- Setting: Dual-centered study; 350-bed community teaching hospital and 478-bed academic medical center
- Inclusion Criteria: Non-pregnant adults admitted to mixed medical/surgical ICU for ≥ 72 hours
- Exclusion Criteria:
- Receiving TPN
- End stage renal disease
- Do not intubate/resuscitate status on admission
- Transferred from an outside institution
- Specific indication for IVF (e.g. diabetic ketoacidosis)
- Study Groups: obese vs. non-obese patients
- Statistical Plan:
- Primary outcome was analyzed using logistic regression
- Categorical and continuous data were analyzed with the X²
 and Mann Whitney U tests, respectively
- Definitions:
- Obesity: BMI > 30 kg/m²
- Fluid overload: positive fluid balance at 72 hours that produces a weight gain > 10% from baseline

RESULTS

	Non-obese	Obese	P-value
	n=97	n=52	
Male	56 (58%)	19 (37%)	0.014
Age, years	64 (52-73)	61 (53-70)	0.560
Race			0.152
Caucasian	62 (64%)	26 (50%)	
African American	30 (31%)	24 (46%)	
Body Mass Index , kg/m ²	24 (21-27)	36 (33-44)	<0.001
Weight , kg	68 (59-80)	107 (91-127)	<0.001
Number of Comorbidities	1 (0-2)	1 (0-2)	0.520
SOFA score	6 (4-8)	6 (3-8)	0.402

Figure 1. Total Fluid Intake Days 1-3 (mL)

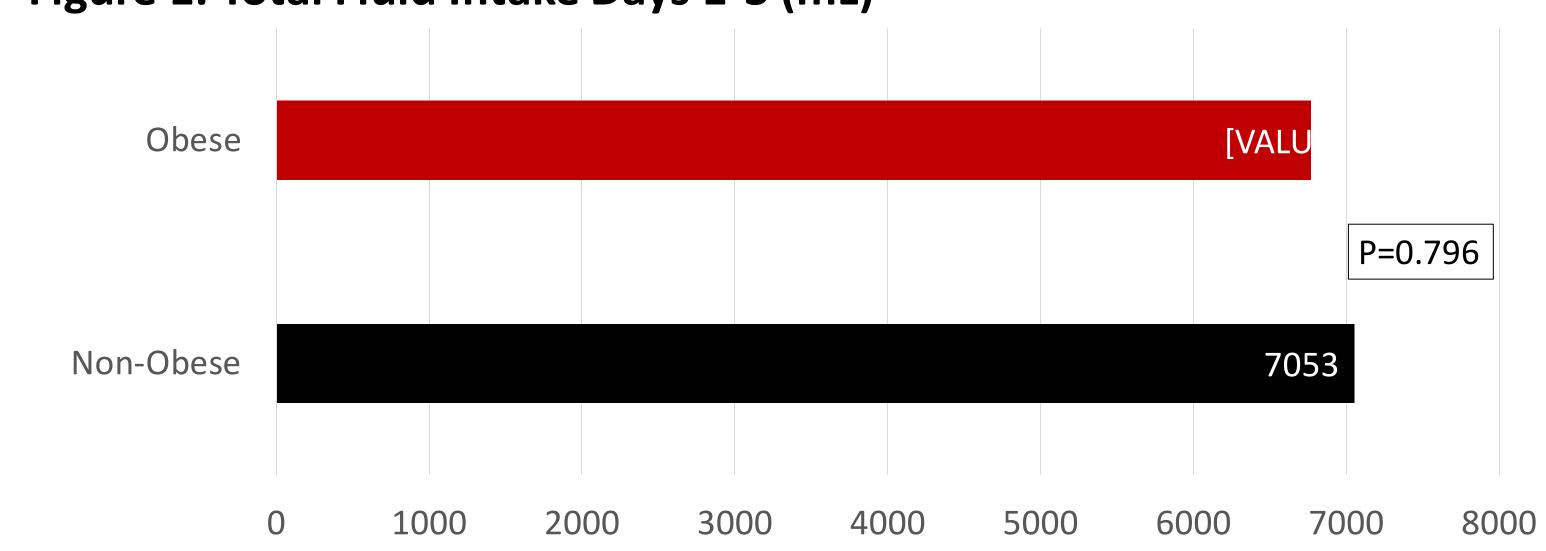


Figure 2. Total Fluid Intake Days 1-3 (mL/kg of TBW)

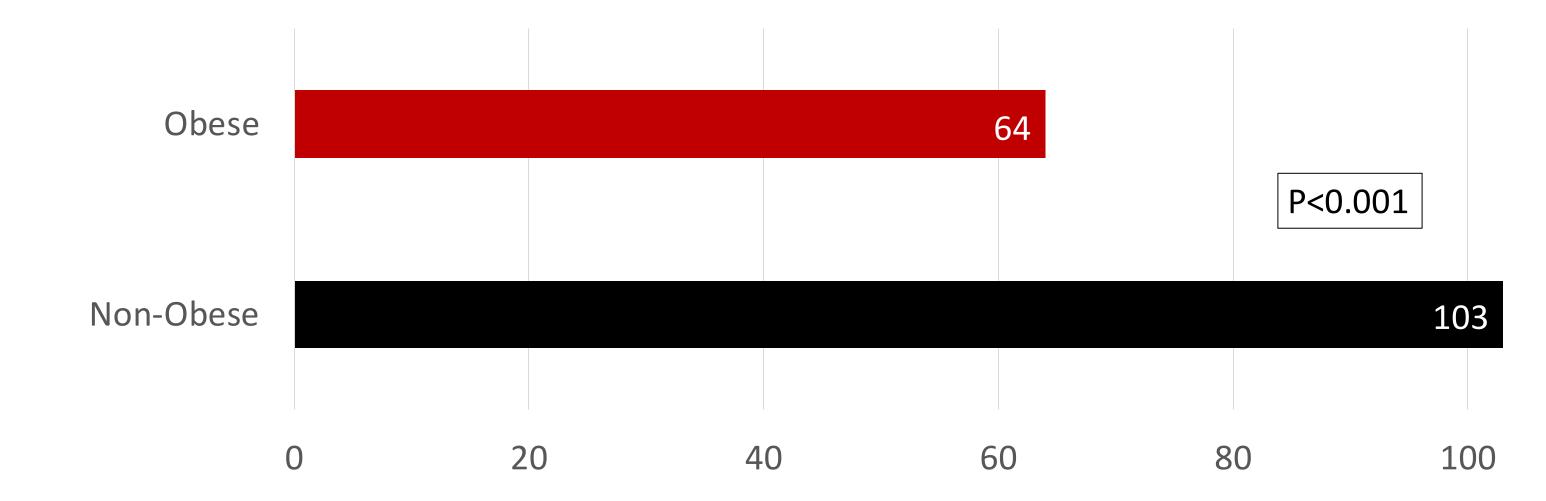
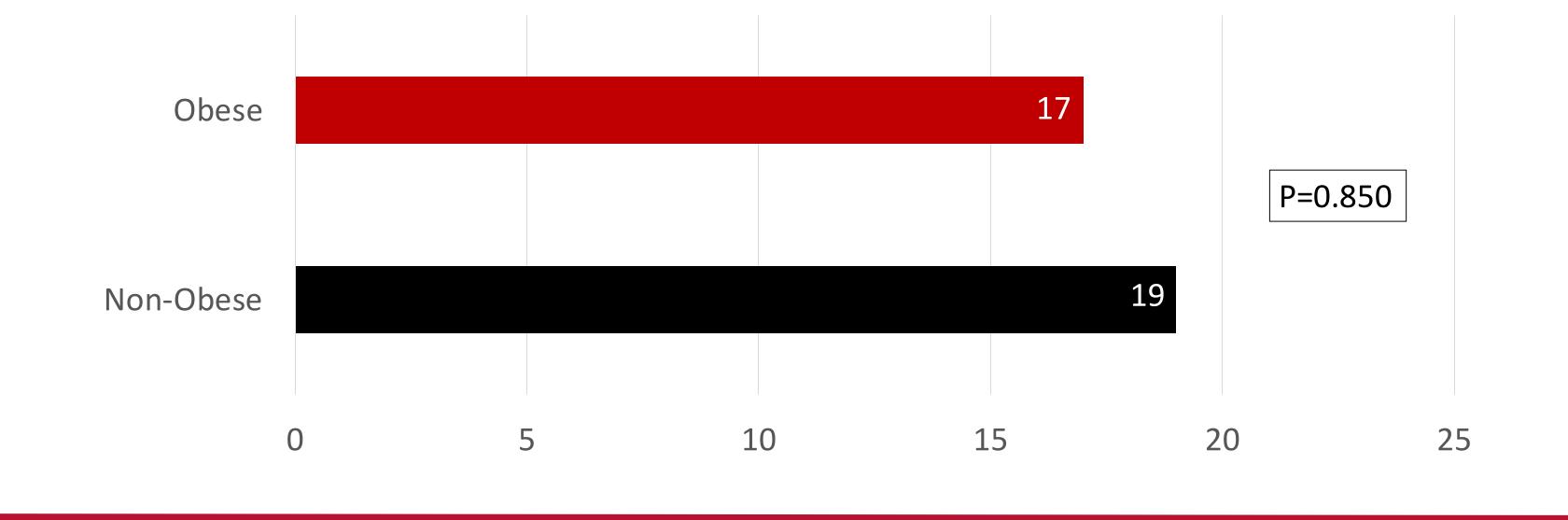



Figure 3. Incidence of Fluid Overload on Day 3 (%)

RESULTS CONTINUED

Table 2. Factors Associated with Fluid Overload in Logistic Regression						
	Odds Ratio	95% CI	P-value			
Age	0.001	-0.002-0.005	0.491			
Male Gender	-0.120	-0.2330.008	0.037			
ICU Length of Stay	0.001	-0.006-0.008	0.779			
Fluid Intake per kg TBW	0.003	0.002-0.004	<0.001			
SOFA Score	-0.006	-0.024-0.012	0.506			
Non-Caucasian race	-0.018	-0.134-0.097	0.755			

Table 3. Clinical Outcomes							
	Non-obese	Obese	P-value				
	n=97	n=52	P-value				
Mechanical Ventilation	18 (19%)	9 (17%)	0.850				
Duration of Mechanical Ventilation, days	3 (0-6)	4 (0-4)	0.540				
Hospital Mortality	17 (18%)	6 (12%)	0.323				
Length of Stay, days	12 (7-17)	11 (7-22)	0.434				
New Onset Atrial Fibrillation	8 (8%)	5 (10%)	0.778				
New Renal Replacement Therapy	6 (6%)	1 (2%)	0.241				
All values presented as Number (%) or Median (Interquartile Range)							

CONCLUSIONS

- Although obese and non-obese patients received a similar volume of fluids, obese patients received less fluid per kilogram TBW.
- There was no statistical difference in fluid overload between obese and non-obese patients.
- When a binary logistic regression controlling for demographics, severity of illness, and fluid intake was applied, BMI was not associated with fluid overload.
- Obese patients experienced numerically less hospital mortality, but this was not significant.
- This study was limited by its retrospective design, small sample size, and imprecise definition of fluid overload.
- This study was an expansion of a single-center study that showed obesity was associated with decreased fluid overload. Future research is planned in order to further assess body habitus and fluid overload at additional sites.

REFERENCES

Frazee E, Kashani K. Fluid Management for Critically III Patients: A Review of the Current State of Fluid Therapy in the Intensive Care Unit. Kidney Dis (Basel). 2016;2(2):64-71.
Hawkins, W. A., Smith, S. E., Newsome, A. S., Carr, J. R., Bland, C. M., & Branan, T. N. (2019). Fluid Stewardship During Critical Illness: A Call to Action. *Journal of Pharmacy Practice*.

Supported by the National Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health (NIH) under Award Numbers UL1TR002378 and KL2TR002381.