

Impact of obesity on hemodynamic interventions in patients with septic shock receiving weight-based norepinephrine

Alex Hytros, PharmD Candidate; Ansley Gayle, PharmD Candidate; Andrea Sikora Newsome, PharmD, BCPS, BCCCP; Susan E. Smith, PharmD, BCPS, BCCCP on behalf of the University of Georgia Critical Care Collaborative

BACKGROUND

- Norepinephrine is currently the first choice vasopressor in sepsis after fluid resuscitation has been attempted
- Norepinephrine is beneficial in restoring organ perfusion and increasing blood pressure due to its vasoconstrictive effects
- VASST trial showed no outcome differences in using norepinephrine alone or in combination with vasopressin
- Despite norepinephrine's long history of use, a standardized dosing strategy has not been established
- Strategies traditionally use either a weight-based dosing (WBD, mcg/kg/min) or non-WBD (mcg/min) strategy with infusion maximums widely varying among institutions from 30-300 mcg/min
- The impact of this dosing strategy on patient outcomes and adverse effects is unknown but could be impacted by body weight
- From 1988 to 2016, the adult obesity rate has increased by an estimated 16.7%
- Obesity is defined as a BMI ≥ 30

STUDY QUESTION

Do norepinephrine requirements and secondline hemodynamic interventions differ in obese versus non-obese patients receiving WBD norepinephrine for management of septic shock?

STUDY OUTCOMES

Primary Outcomes

 Cumulative dose of norepinephrine (mg)

Secondary Outcomes

 Receipt of and time to secondline hemodynamic interventions and patient outcomes

HYPOTHESIS

It is expected that the use of WBD will result in greater cumulative doses of norepinephrine and earlier initiation of second-line interventions in obese patients

INCLUSION AND EXCLUSION CRITERIA

TABLE 1. VARIABLES COLLECTED

Inclusion

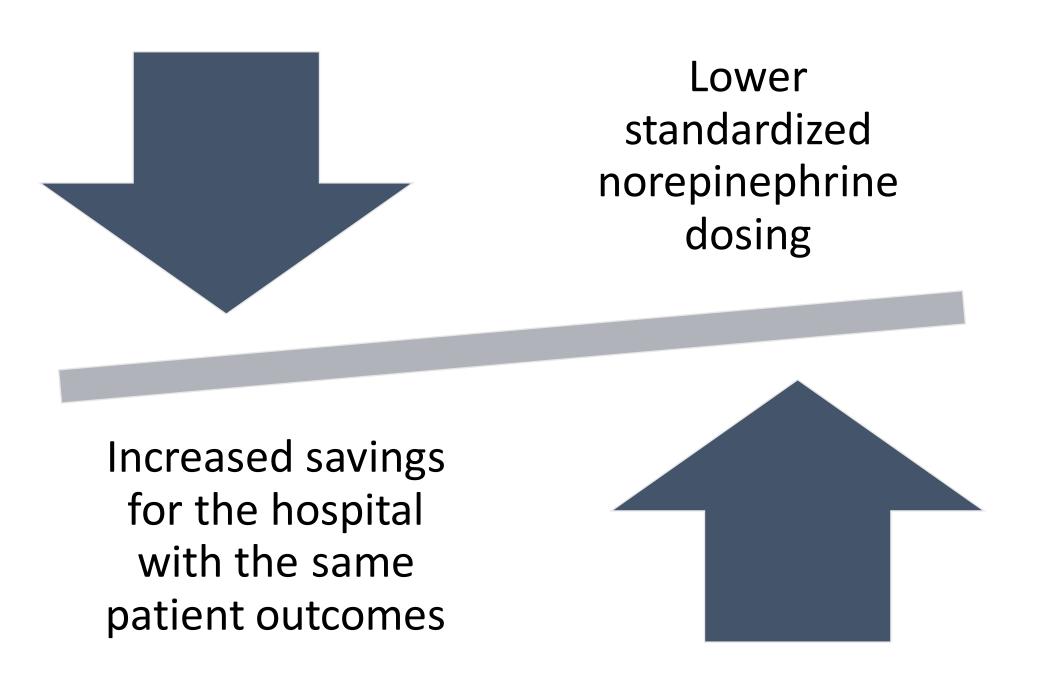
- Critically ill patients with septic shock
- Any BMI

Mortality

 Received a continuous norepinephrine infusion for at least one hour

Exclusion

- Age < 18 years old
- Second lifetime shock event in the same patient
- Other vasopressor received prior to NE
- NE ordered but not given
- NE infusion of <1 hour


Baseline Characteristics	Fluid Data	Outcomes	Norepinephrine (NE) Related Vitals
Age (years)	Input Day 1	Cumulative NE dose (mg)	MAP at NE initiation
Weight (kg)	Output Day 1	Initial NE infusion rate (mcg/min)	Goal MAP
BMI	Net Day 1	Max NE infusion rate (mcg/min)	Time to goal MAP
Gender	Input Day 2	Total NE infusion duration (minutes)	
Co-morbidities	Output Day 2	Average NE infusion rate	
CAD	Net Day 2	Secondary vasopressor initiated?	
CHF	Input Day 3	NE infusion rate at the time of second vasopressor initiation (mcg/min)	
COPD	Output Day 3	Cumulative secondary vasopressor dose in NE equivalents	
Hepatic dysfunction (hepatitis, cirrhosis)	Net Day 3	Tertiary vasopressor initiated?	
Renal dysfunction (insufficiency, CKD, ESRD)		NE infusion rate at the time of third vasopressor initiation (mcg/min)	
CRRT		Cumulative tertiary vasopressor dose in NE equivalents	
Baseline organ dysfunction		Corticosteroid administered	
SOFA Score		Cumulative steroid dose (mg)	

METHODS

- Design: IRB-approved, multi-center, retrospective cohort.
- A list of patients, who had norepinephrine infusions, was pulled from Augusta University and were then selected to be used for data collection based on inclusion and exclusion criteria
- Descriptive statistics will be used
 - Categorical and continuous variables will be compared with the chi-squared and Mann-Whitney U tests, respectively
- A linear regression model controlling for severity of illness, site of infection, and patient demographics will be applied to the primary outcome

IMPLICATIONS

- If there are no statistically significant differences in secondline hemodynamic interventions, then it would demonstrate that there is no benefit to WBD and a standardized dose may need to be used
- A standardized norepinephrine dose may reduce the need of secondary hemodynamic interventions

REFERENCES

- Impact of Norepinephrine Weight-Based Dosing Compared With Non-Weight-Based Dosing in Achieving Time to Goal Mean Arterial Pressure in Obese Patients With Septic Shock. Annals of Pharmacotherapy 2017, Vol. 51(3) 194–202.
- Implementation of standardized dosing units for IV medications. American Journal of Health-System Pharmacy Vol 71 Dec 15, 2014.
- Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock. Critical Care Medicine Vol 45(3) 486-552. March 2017.

ACKNOWLEDGEMENTS

Supported by the National Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health (NIH) under Award Numbers UL1TR002378 and KL2TR002381