Medication Regimen Complexity Predicts Fluid Balance in the Medical ICU

Bill Olney, PharmD PGY1 Pharmacy Practice Resident UK Healthcare Solution 2015 Contemposities and a second strain of the second strain

Fluid Overload in Critically III Patients

Societyof

The Intensive Care Professionals

Critical Care Medicine

Crit Care Med 2016; 44: 1891-1900. ClinicoEconomics and Outcomes Research 2013: 5 289-296. Mitchell. Ann Am Thorac Soc. 2015. Patel. Adv Chronic Kidney Dis. 2016.

Fluid Stewardship

Journal of Pharmacy Practice 2019. 1-11. British Journal of Anaesthesia 2014; 113(5): 740–7.

Journal of Pharmacy Practice 2019. 1-11. British Journal of Anaesthesia 2014; 113(5): 740–7.

Intensive Care Unit Medication Regimen Complexity Score	
Parameter	Point Value
High Priority Medications	
Aminoglycosides (amikacin, gentamicin, tobramycin)	3x
Amphotericin B and Liposomal Amphotericin B	1
Antiarrhythmics (amiodarone, dofetilide, sotalol)	1x
Anticoagulants (NOAC's/DOAC's, fondaparinux)	1x
Anticonvulsants (carbamazepine, phenobarbital, phenytoin, valproic acid)	3x
Argatroban	2
Azole antifungals (posaconazole, voriconazole)	2x
Blood Products (Factor products, Antithrombin III)	2x
Chemotherapy (active inpatient)	3x
Clozapine	3
Digoxin	3
Ganciclovir/valganciclovir	1x
Hyperosmolar fluids (hypertonic saline (1.5%, 3%, 23.4%), mannitol)	1x
Immunosuppressants (cyclosporine, sirolimus, tacrolimus)	3x
Lidocaine (continuous infusion)	2
Lithium	3
Prostacyclins (epoprostenol, iloprost, treprostinil)	2x
Theophylline	3
Therapeutic heparins (enoxaparin, heparin infusion)	2x
Vancomycin (IV)	3
Warfarin	3
ICU Medications	
Neuromuscular Blockade	2
Continuous infusions (exclude those listed elsewhere)	1x
Total Parenteral Nutrition	
Managed by non-pharmacist service	1
Managed by clinical specialist pharmacist	3
ICU Prophylaxis and FAST HUGS BID	.1
Thromboembolic prophylaxis (exclude heparin infusion, therapeutic enoxaparin)	1
Stress ulcer prophylaxis (exclude pantoprazole infusion)	1
Glycemic control (subcutaneous insulin; exclude IV insulin)	1
Bowel regimen	1
Chlorhexidine	1
Analgesia and Sedation	.1
Opioids and sedatives (scheduled and PRN)	1x
Continuous infusion opioids and sedatives (propofol, fentanyl, dexmedetomidine, ketamine,	2
benzodiazepines)	2X
Antimicrobial Agents	
Antimicrobials (include HIV medications, exclude those listed elsewhere)	1x
Restricted antimicrobials	2x
Devices	
Dialysis	2
Extracorporeal membrane oxygenation (ECMO)	2
Intra-aortic balloon pump (IABP)	1
Left ventricular assist device (LVAD)	1
Mechanical ventilation	2

American Journal of Health System Pharmacy 2019. (76). Supplement 4 (92-95). American Journal of Health-System Pharmacy 2019. (76). Supplement 2 (34-40).

MRC-ICU Correlations

Mortality

Drug-Drug Interactions

Pharmacist Interventions

ICU Length of Stay

APACHE III score

American Journal of Health System Pharmacy 2019. (76). Supplement 4 (92-95). American Journal of Health-System Pharmacy 2019. (76). Supplement 2 (34-40).

Pharmacists in the ICU setting improve patient outcomes

Patients in the intensive care unit are at increased risk for fluid overload

MRC-ICU is an objective, validated tool in the intensive care

Medication regimen complexity may be a novel method for predicting patients at risk for fluid overload

Anderegg SV, et al. Am J Health-System Pharm. 2014 Sep;71: 1469-79. The Faculty of Intensive Care Medicine/The Intensive Care Society. Core Standards for Intensive Care Units. Ed 1. 2013. Gibson GA. ASHP Best Practices Award in Health-System Pharmacy. 2013. SHPA Committee of Specialty Practice in Clinical Pharmacy. J Pharm Pract Res. #CCC49 2005;35:122-46.

Horn E, et al. Crit Care Med. 2006;34:S46-51

What is the relationship between the MRC-ICU score and positive fluid balance in critically ill patients?

Study Design

Design

• Retrospective chart review to capture MRC-ICU score and fluid administration during first 72 hours of admission

Patient Population

- Inclusion: MICU patients between January 1 2017 April 1 2018
- Exclusion: Length of stay (LOS) was less than 24 hours due to either death, transfer, or hospice orders at 24 hours

Data Analysis

- Demographics included age, sex, weight, ICU LOS, fluid balance
- MRC-ICU was scored at 24 hours, 48 hours, and 72 hours

- A total of 50 patients were included. 52% (n=26) female
- Median age was 58 years (interquartile range 51-79), median weight 90kg (interquartile range 69-104)
- MRC-ICU score at 24 hours was 16.3 (interquartile range 12-20)
- MRC-ICU at 24 hours was related to fluid balance at time 72 hours
 - rs= 0.287, p=0.043
- Following linear regression*, the MRC-ICU remained weakly correlated with fluid balance
 - β coefficient 329.173, 95% CI 115.256 543.091, p=0.003

Future Directions

- Limitations include single center, retrospective design with small sample size
- Adds fluid balance to growing list of metrics correlated with medication regimen complexity in the critically ill patient population
- Next steps:

Critical Care Medicine

The Intensive Care Professi

- Larger multicenter trial for external validation
- Further studies involving other critically ill populations to validate generalizability

#CCC49

Susan E. Smith, PharmD, BCPS, BCCCP Clinical Assistant Professor Athens, GA

Study Team

Andrea S. Newsome, PharmD, BCPS, BCCCP Clinical Assistant Professor Augusta, GA

Aaron Chase PharmD Candidate 2020 Augusta, GA

Questions?

Medication Regimen Complexity Predicts Fluid Balance in the Medical ICU

Bill Olney, PharmD PGY1 Pharmacy Practice Resident UK Healthcare Dill_olney

